A Web Developer’s
[llustrated Primer to
Application Security

Justin Ferguson

UMB Bank
OWASP Kansas City

PLATINUM SPONSORS

st&ckifg i o Alfresco
B

Balance
Innovations

: ; Ingenuity Consulting

®
Partners, Inc. S r I n‘t
“Innovation for Your Success”
®

GOLD SPONSORS

ADVANTAGE CENTRIQ
Rcee UIVIBY ~n-g) ©

(M}

Xtelerik

deliver more than expected

=Y. 88 ADAPTIVE &P, 1

UTIONS GROLWU KC MID AMERICA CHAPTER

psT COOENX Perceptwesmﬁware

SYSTEMS XTI

SILVER SPONSORS

di t .)
AsBiiet B Microsoft @

Justin Ferguson

Information Security Engineer

e AppDev, InfoSec, Systems Admin
e Not a PowerPoint wizard.
Work: http://www.umb.com/

E-Mail: justin.ferguson@umb.com

Personal: http://jferg.thedotin.net/

Twitter: @jferg
E-Mail: jferg@thedotin.net

http://www.umb.com/
http://jferg.thedotin.net/

What is AppSec?

What IS AppSec?

AppSec vs. NetSec

NetSec — Put a hard,
crunch shell around the
soft, juicy middle.

|
|
|

(],

|
|
|
i
A Application &
y ppilicatio i Easy, right?
%“ Application g
“\ '/

o~ (Not really that simple.)
Viinoes

What is AppSec?

Why not? This Guy.

- g o
'-'\A;_‘_ | -
S)
E N

What IS AppSec?

AppSec is making the soft,

juicy middle ... not so soft
and juicy.

| Authentication
S

o * Access Control
L A
Application @é}g@ 4
E % 3 Secure Development
Application]
“g‘ Application
%’g "t
4 d

noeg

Builders, Breakers, and

Defenders
AppSec is generally divided into 3 groups:

* Builders — Developers, Designers, Architects

* Breakers — Testers and Hackers

* Defenders — Securing the Builders from the
Breakers

What is OWASP?

Open Web Application Security Project

A Vision for OWASP

Outreach

Projects

StakeHolders
Focus

Support

Platform

=" =

= =

L
0000

|
O000

LITTTT]

[8 0

L

L Builders)

L Breakers y

(
¢

0000

[

OWASP Is an open community
dedicated to enabling organizations
to conceive, develop, acquire,
operate, and maintain applications
that can be trusted.

Local Chapter: https://www.owasp.org/index.php/Kansas City

Twitter: @OWASPKC

Meetings about every two months.

https://www.owasp.org/index.php/Kansas_City
https://www.owasp.org/index.php/Kansas_City

What is OWASP?

Tools for Builders, Breakers, and Defenders:

Software Assurance Maturity Model (SAMM), Secure Coding
Practices, Application Security Verification Standards (ASVS)

https://www.owasp.org/index.php/Category:Software Assurance Maturity Model
https://www.owasp.org/index.php/OWASP Secure Coding Practices -

Quick Reference Guide

https://www.owasp.org/index.php/Category:OWASP Application Security Verificatio
n_Standard Project

WebGoat Project
https://www.owasp.org/index.php/Webgoat

Zed Attack Proxy (ZAP)
https://www.owasp.org/index.php/OWASP Zed Attack Proxy Project

Enterprise Security API (ESAPI), CSRFGuard, AntiSamy

https://www.owasp.org/index.php/Category:OWASP Enterprise Security API
https://www.owasp.org/index.php/Category:OWASP CSRFGuard Project
https://www.owasp.org/index.php/Category:OWASP AntiSamy Project

https://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model
https://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://www.owasp.org/index.php/Webgoat
https://www.owasp.org/index.php/Webgoat
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
https://www.owasp.org/index.php/Category:OWASP_CSRFGuard_Project
https://www.owasp.org/index.php/Category:OWASP_CSRFGuard_Project
https://www.owasp.org/index.php/Category:OWASP_AntiSamy_Project
https://www.owasp.org/index.php/Category:OWASP_AntiSamy_Project

" What is OWASP?

And one other thing ...

The OWASP Top 10

The OWASP Top 10

A ranked list of the Top Ten threats to web application security.

Al.
A2.
A3.
A4.
A5.
Ab.
A7.
A8.
A9.

Injection

Broken Authentication & Session Management
Cross-Site Scripting (XSS)

Insecure Direct Object References

Security Misconfiguration

Sensitive Data Exposure

Missing Function Level Access Control
Cross-Site Request Forgery

Using Known-Vulnerable Components

A10. Unvalidated Redirects and Forwards

- OWASP Top 10 for 2013 (Release Candidate)
https://www.owasp.orqg/index.php/OWASP Top Ten

https://www.owasp.org/index.php/OWASP_Top_Ten

The OWASP Top 10

Aﬂ INjectiomn

2. Broken Authentication & Session Management
A3. Cross-Site Scripting (XSS)
A4. Insecure Direct Object References
A5. Security Misconfiguration
A6. Sensitive Data Exposure
A7. Missing Function-Level Access Control
A8. Cross-Site Request Forgery (CSRF)
A9. Using Known-Vulnerable Components
A10. Unvalidated Redirects and Forwards

Injection

HI, THIS 15

WERE HAVING SOME
COMPUTER TROUBLE.

\%m

YOUR SON'S SCHOOL.

Injection flaws occur when untrusted data is sent

OH, DEAR - DID HE
BREAK SOMETHING?

IN HWHY /

S

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students; -~ 7

~COH.YES LUITTLE
BOBBY TABLES,
WE CALL HIM.

WELL, WE'VE LOST THIS

YEAR'S STUDENT RECORDS.
T HOPE YOURE HAPPY.

‘Il AND I HOPE

“~ YOUVE LEARNED
TO SANMIZE YOUR
DATABASE INPUTS.

xkcd.com

to an interpreter as part of a command or

qguery. The attacker’s hostile data can trick the

Interpreter into executing unintended
commands or accessing unauthorized data.

g \{
\\;-‘ \ =
7

. —

/ y L
| N

SQL Injection

userName = <user input>;
password = <user 1nput>;

/] ..

String SQLQuery = “SELECT * FROM USERS WHERE
USERNAME = ““ + userName + “° AND PASSWORD =
“““ + password + “°;7;

results = SQLConn.execute(SQLQuery);

if (results.count == 0) {
return errorPage;

}

.n ‘) '\ {
N F"
—~— 3 4

——

” v—’ } 5?;:.:__-
| B

Trusted vs. Untrusted Data

Trusted Data — Data that comes from a known
source, and is known to be “clean”. i.e. data
from a backend system, or data from a
database (if it was scrubbed before insertion).

Untrusted Data — Data that comes from an outside
source, i.e. users (or hackers).

Trust Boundary — A place within an application
where data moves from one trust status to
another.

WebAppSec Rule #1: If data has been to the
browser and back — DON’T TRUST IT!

r 0
\\;-‘ \ =
ey

N

SQL Injection

Injection happens when untrusted data crosses a trust
boundary and is treated as trusted data.

userName
passwonrd

<user 1input>;
<user input>;

String SQLQuery = “SELECT * FROM USERS WHERE USERNAME = ¢
+ userName + “° AND PASSWORD = ¢“ + password + “’;%;

>)

results = SQLConn.execute(SQLQuery);

if (results.count == 0) {
return errorPage;
¥

Y \
ol 35

/ SQL Injection

userName = “jJjustin’;
password = ‘“secure”;

SELECT * FROM USERS WHERE USERNAME =
‘Justin’ AND PASSWORD = f‘secure’;

One record returned. Great!

0 ¢
"\:‘;_‘ |, .y }c-

‘ SQL Injection

userName = “justin®;
password = “’ OR 1=1; --"’;

SELECT * FROM USERS WHERE USERNAME =
“Justin’ AND PASSWORD = ¢’ OR 1=1; -
J

All records returned. Uh-oh!

y X
e '
S

—

N

. A
&

N
s

Blind Injection

Blind SQL Injection occurs when the results of the
query are not visible to the end user ... but just
because you can't see it doesn’t mean it’s not
happening!

-;\,,;-‘. y r. !

f Blind SQL Injection - Demo

WordPress 2.1.3 contained an unauthenticated
blind SQL injection in admin.php.

All your WordPress are belong to us!

v 8
__— A\ 1 =

=

Other Injection

Injection can occur anytime that untrusted data is
used in a trusted context.

* LDAP lookups

* Building commandlines

System.exec(“processor “ + userName + “ /var/log/datafile”);

What if userName ="“; rm —rf /*; cat™?

* JavaScript injection (beware of eval()!)

-~
X
7

_;.‘.
—

ode Injection

Injection doesn’t have to just be in data access — it
can happen in code too!

eval() and its brethren are dangerous in any
language.

o 3® .)
ke -
—
. “ = anV

R

A A\
7 | &

Avoiding Injection

Instead of:
S L I . t. sql = String.concat(“select * from my_table where username = "¢
nJeC Ion username, “’ and password = ”, password, “’”);

SQLConn.execute(sql);

* Parameterized Use

sql = “select * from my_table where username = ? and password = ?”

Queries I SQLconn.execute(sql, username, password)

 Structured Data Access
Layers

 Stored Procedures ... put

SQLConn.execute(“myStoredProc(‘“+userInput+“’);”);

doesnt fix anything!

* Input filtering and sanitization

)

\\;-;
- =

voiding Injection

All Injection

* Parameterization!

System.execute(“process”, “-u”, userName, “/var/run/output”);

* Input filtering and sanitization — sometimes the
only option ... but be careful! (More on that

topic later.)

The OWASP Top 10

Al.

AZ2. Broken Authehticattion
Session Management

Cross-Site Scripting (XSS)
Insecure Direct Object References

A3.
A4.
AS.
Ab.
A7.
A8.
A9.

Injection

Security Misconfiguration

Sensitive Data Exposure

Missing Function-Level Access Control
Cross-Site Request Forgery (CSRF)
Using Known-Vulnerable Components

A10. Unvalidated Redirects and Forwards

roken Auth & Session Mgmt

Authentication and session management is
frequently implemented incorrectly.

As a result, an attacker can:
* Compromise credentials

* Steal sessions

* Assume victims’ identities within the application

roken Session Mgmt

Example 1:

userName = getCookie(“userName”);

if (userName == null) {

userName = doLogin();
setCookie(“userName”, userName);

} else {
display(“Logged in as “ + username + “!”);

getPrivileges(userName);

.
A N

roken Session Mgmt

Example 2:

class Session {

String new() {
this.id = Time.current();

return this.id;

// Current time in ms

if (user.session == null) {
user.session = new Session();

setCookie(“SessionID”, “user.session”);

oiding Broken Session Mgmt

* Simple: Use your framework’s session management
and authentication capabilities!

* But, if you must implement your own:

Randomly generate session IDs. (More on
randomness later.)

Pass only the session ID to the browser.

Change the session ID regularly.

Store the source IP in the session, and check it
with every request.

Always give sessions a time limit.

roken Authentication

Can encompass several different problems:
* Improper Password Storage

* Weak Passwords (Length + Complexity)
* Credentials Transmitted in Clear-Text

* Too Much Information in Error Messages

 Lack of Controls — No Lockout after Failures

Avoiding Broken Auth

Proper Password Storage

* Salted one-way hash with a large keyspace.

o U:EDM;[;N :i:DR;ER ﬂzg ?ﬂsor ~ Mpﬁ”ﬁf&sﬁ Enf Stron Passwords
(”ﬁﬁé'%"'ﬂ UNKNOWN T;El;r" S0 || E Os was A zerg? | O rce g
e e s | R e ||, L X
Trubddor83 || dociaye
T PLASIBLE ATALK 04 A WEAK REMOTE ()
ko o T v || EFEE B Longer passwords are
rmme PO || TS T e harder to guess.

~ Ut BITS OF ENTROPY
OoooOoooonooo

* Password quality

correct hore baﬁerg stgl|
0oL '_J O ac '__|':I'_.|_‘ :J.— 0 oo oooooooaooo
R | e gauge
1600 GUESSES/SEC
FOUR RANDOM /

HARD e AR * Tell users what's

THROUGH 20 YEARS ¢f EFFORT, WEVE SUCCESSFULLY TRAINED
EVERYONE TO USE' PASSWORDS THAT ARE HARD FOR HUMANS W r O n g
]

T0 REMEMBER, BUT EARSY FOR COMPUTERS TO GUESS.
xkcd.com

voiding Broken Auth

Never transmit usernames/passwords in plain-text.

* Even login pages should be SSL.

Don't give errors details in login-failure messages.
* Just say “login failed” — no more.

Implement proper authentication controls

* | ockouts.

* Notify user of password changes.

The OWASP Top 10

Al. Injection

A2. Broken Authentication & Session Management

@ Cross-Slte Scripdng (XS9)

4. Insecure Direct Object References
A5. Security Misconfiguration
A6. Sensitive Data Exposure
A7. Missing Function-Level Access Control
A8. Cross-Site Request Forgery (CSRF)
A9. Using Known-Vulnerable Components

A10. Unvalidated Redirects and Forwards

hat IS XSS?

Cross-Site Scripting occurs when a web application
takes untrusted data and displays it to the user as if
it was trusted data.

I can make my content show up in your application.

What's the risk?

So ... I can make my content show up in
somebody else’s website. What's the big deal?

* Social Engineering
* Phishing

* Cookie Stealing

ypes of XSS

Three types of XSS:

* Reflected

* Persisted (or Stored)
* DOM-based

Reflected XSS

Most Common

 |east Dangerous

* Basically Stateless

* Still Dangerous

What if your grandpa got an e-mail saying:

Your bank account records need updating. Click
this link to update them!

https://www.umb.com/mywebapp?address=%22%3e%3c%73%63%72%69%70
%74%3e%61%6C%65%72%74%28%22%54%68%61%6€%6b%20%79%61%75%21%22%
29%3C%2t%73%63%72%69%70%74%3e

: A - ¥ !
L
i N\

eﬂected XSS

The passed in value for “address” gets inserted
into:

<input type=“hidden” name=“addr” value=“[address]”>

SO th at U The page at https:/ faanie umb,com says:

Thank you!

13%63%72%69%70
)%617%75%21%227%

https://www
%74%3e%61%6
29%3¢c%21%7 3]

Decodes to:

https://www.umb.com/mywebapp?address="><script>alert("Thank
you!")</script>

Results in:

<input type=“hidden” name=“addr” value=“">
<script>alert("Thank you!")</script>”>

Persisted XSS

Just like Reflected XSS, but stored permanently.
* Less Common
* Much More Dangerous

* Leaves Permanent Content on the Target Site

* Can be an issue any time user-generated
content is displayed.

Persisted XSS

IP requests: Search Results

New Modify Save Rﬁrﬁ Firsk Prew Go To Mexk Lask
IP Requests
0S/02/2013
Request Stage: Include Assignment
Tracking ID 4 | Requeste... | Load Balanced Site Request Creator | Request Description
2155433 Mo White, Sean =PAN style="font-size: Spt; font-family: "arial|'sans-
zerif =TOC-\V A4

TOC-
CHECKZ21-

=M WB-

TOC-VAS etk D04 235509121002 I 21 L.F2.G03
TOC-VAR
Sy&ietam _ Device
R Podcation L sedsnl Location —

TOC-

=M DMZ-

TOC-VAT etHl.EDS 234726111001 WA 4.36 L.G1.C03
S
eths FEGRBAE1IECDC_30A L&A 603 =
Ll |

'DOM-Based XSS

Similar to the previous two, but more complex:

* QOccurs when JavaScript in the page expects a

simple input, but is passed a DOM object
instead.

* Usually Reflected, but more JavaScript-y.
(Basically just a different vector for entry.)

S r \

J voiding XSS

* Input filtering and sanitization — once again, this
iS hard to do right.

* HTML Entity-encoding not always sufficient.
* OWASP AntiSamy & ESAPI
* MS Anti-CSS Library

* Proper escaping of user-provided content.

* Whitelisting HTML tags.

voiding XSS

RL||Ie 01: é\lﬁver insert untrusted data except in allowed locations. (See
rules 1-5.

Rule 1: HTML Escape before inserting untrusted data into HTML
element content.

Rule 2: Attribute Escape before inserting untrusted data into HTML
attributes.

Rule 3: JavaScript Escape before inserting untrusted data into
JavaScript Data Values

Rule 3.1: HTML Escape JSON values in an HTML context and read the data with
JSON.parse.

Rule 4: CSS Escape and strictly validate before inserting untrusted
data into HTML Style Properties

Rule 5: URL Escape before inserting untrusted data into HTML URL
Parameter Values.

- OWASP XSS Prevention Cheat Sheet

https://www.owasp.org/index.php/XSS (Cross Site Scripting) Prevention Cheat Sheet

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

Y \
ol 35

S
N

The OWASP Top 10

Al. Injection

A2. Broken Authentication & Session Management
A3. Cross-Site Scripting (XSS)

A4, Insecure Direct Ob)ject
Relferences

A5. Security Misconfiguration

Ab6. Sensitive Data Exposure

A7. Missing Function-Level Access Control
A8. Cross-Site Request Forgery (CSRF)
A9. Using Known-Vulnerable Components
A10. Unvalidated Redirects and Forwards

<h2>Choose a statement: </h2>

<a href=“getstatement.
<a href=“getstatement.
<a href=“getstatement.
<a href=“getstatement.

getstatement.aspx does nothing beyond return the
statement corresponding to the id which was

passed to it.

aspx?1d=4095269”>Jan 2013</1i>
aspx?1d=5029938”>Feb 2013</1li>
aspx?1d=5982040”>Mar 2013</1li>
aspx?1d=6502921">Apr 2013</1li>

So...what if you pass id=5982041 instead?

v 8
__— A\ 1 =

=

Path Traversals

* Not as common these days, but still an issue.

* Common problem in forum apps, etc

<form method=“post” action=“/uploadAttachment”>

Enter destination file: <input type=“text” name=“dest”>
Choose file to upload: <input type=“file” name=“upload”>
</form>

[uploadAttachment]

$fh = open(“rw”, $ POST[‘dest’]);
write $fh, $ POST[‘upload’];

close $fh;

But what if somebody specifies
“JSoSW)] Jetc/passwd” as tdest”™?

) ; X
3.\;'

voiding IDORs

* Always check permissions before returning an
object to a user!

* Don't use direct file references — retrieve non-
public objects via code.

* Enforce object-level permissions at the server
level.

* Properly escape or remove slashes from
filenames that are specified by the user.

* And as a last resort: Randomized object
identifiers.

Y \
ol 35

S
N

The OWASP Top 10

Al. Injection

A2. Broken Authentication & Session Management
A3. Cross-Site Scripting (XSS)
A4. Insecure Direct Object References

AS. Security Misconiguration

Ab6. Sensitive Data Exposure

A7. Missing Function Level Access Control
A8. Cross-Site Request Forgery (CSRF)
A9. Using Known-Vulnerable Components

A10. Unvalidated Redirects and Forwards

v 8
—_— 1

Security Misconfiguration

Misconfigurations can often provide an attacker
with a significant level of information about your
infrastructure, components, and code.

Sometimes they can even result in vulnerabifities.

Security Misconfiguration

Security misconfigurations can manifest themselves in
many ways:

* Failure to change default passwords and remove
sample applications.

* Failure to customize error pages to remove detailed
information about systems.

Version Numbers

Stack Traces

* Failure to disable unused features.

Directory Listing

Avoiding Security Misconfiguration

* Well-documented deployment and hardening processes.

* 0OS, Web/App Server, DBMS, Applications, and Libraries
. Disable all un-necessary features and functionality.

. Limit access to administrative facets of the application.

* Robust patch and configuration management.

* Keep all of your infrastructure up-to-date.

* Solid, multi-tier application and network architecture.
* Regular auditing, scanning, and penetration testing.

* Don't wait for the bad guys to find your vulnerabilities.

)

T
4 N

The OWASP Top 10

Al. Injection

A2. Broken Authentication & Session Management
A3. Cross-Site Scripting (XSS)

A4. Insecure Direct Object References

A5. Security Misconfiguration

AG. Senslitve Data [EXposure

A7. Missing Function-Level Access Control
A8. Cross-Site Request Forgery (CSRF)
A9. Using Known-Vulnerable Components

A10. Unvalidated Redirects and Forwards

X (&
p— 1

Sensitive Data Exposure

Web applications containing sensitive information
must take extra precautions, or risk a breach.

Breaches can come with mandatory reporting

reqguirements, depending on your jurisdiction and
the type of data.

What is Sensitive Data?

* Credit Card Numbers (aka PAN)

* Social Security/Driver’s License Numbers

* Bank Account Numbers

* Many other forms of ID number that are issued
to an individual.

* Healthcare Information (HIPAA)
And in some jurisdictions:
* Name, Birthdate, Address

Y \
N -

he Coffee Shop Rule

If you wouldn’t be comfortable yelling a piece of
information about yourself to someone across a
busy coffee shop, it’s quite possibly sensitive data.

Treat it as such.

X (&
——, 1 S

—

Avoiding Sensitive Data Exposure

* If you don't have to store it, don't store it.
* Make sure to use encrypted connections.
* If you do have to store it, encrypt it!

* Row- or cell-level encryption is best.

* Use a strong key, stored securely.

* Backups, too!

Y \
ol 35

S
N

The OWASP Top 10

Al. Injection

A2. Broken Authentication & Session Management
A3. Cross-Site Scripting (XSS)

A4. Insecure Direct Object References

A5. Security Misconfiguration

Ab6. Sensitive Data Exposure

A7Z. Missing Funcdon-Level
Access Control

A8. Cross-Site Request Forgery (CSRF)
A9. Using Known-Vulnerable Components
A10. Unvalidated Redirects and Forwards

v A
) Ay
J S -
——, 2
> —

¥

issing Function-Level Access Control

Occurs when web applications limit access to areas
of the application simply by not showing links to
those areas or resources.

An attacker, through guessing or through prior
knowledge of the application, can access these
resources by entering the URL directly.

v 8
— “ — > \ 1 -

-—

Missing Function-Level Access Control

[index.php]
<h1>Main Menu:</hl1>
User List
<?php if (userType==“admin®) { ?>
Admin Tools</1li>
<?php } ?>
Log Out</1i>

[showPage.php]

$action = $ SERVER[‘QUERY_STRING’];

if ($action == ‘userList’) {showUserList();}

else if ($action == ‘adminTools’) {showAdminTools();}
else if ($action == ‘logout’) {logout();}

else { showMainMenu(); }

What happens if a malicious user types
http.//mywebapp.com/showPage’adminlools into
the browser after logging in? How do we fix it?

http://mywebapp.com/showPage?adminTools

ssing Function-Level Access Control

[index.php]
<h1>Main Menu:</h1>
User List
<?php if ($userType==“admin”) { ?>
Admin Tools</1li>
<?php } ?>
Log Out</1i>

[showPage.php]
$action = $ SERVER[“QUERY_STRING”];
if ($action == “userList”) {showUserList();}
else if ($action == “adminTools” &&
$userType == “admin”) {showAdminTools();}
else if ($action == “logout”) {logout();}
else { showMainMenu(); }

Simple — add function-level access checks!

J r V!

\;.‘.
—

—

/ y L
| N

Missing Function-Level Access Control

Other common examples:

* Not checking that the user is authenticated at
the beginning of every request.

* "Hiding” functionality by not linking to it.

FLAC Demo

Another bug in an old version of WordPress.

Avoiding Forced Access

* Check the user’s access when the user attempts
any action within the application.

* Never rely solely on presentation-layer access
control.

* Code access control into the core of the
application, or use a framework that embeds
access control.

The OWASP Top 10

Al. Injection

A2. Broken Authentication & Session Management
A3. Cross-Site Scripting (XSS)

A4. Insecure Direct Object References

A5. Security Misconfiguration

Ab6. Sensitive Data Exposure

A7. Missing Function-Level Access Control

A8 Cross-Slite Request FoOrRgEry
(CSIRIF)

A9. Using Known-Vulnerable Components

A10. Unvalidated Redirects and Forwards

X (&
p— 1

Cross-Site Request Forgery

CSRF attacks are the result of a malicious website
generating a valid request to a target site, relying
on the fact that the user accessing the malicious
site also has an active session on the target site.

X (&
—\ 3

Cross-Site Request Forgery

Example: Jane User is doing a little online banking.

Jane gets an e-mail from her dad
telling her to “check out this cute
cat picture”, and a link.

Jane clicks on the link...

...and gets a cute cat! And maybe
a link to “click here for more cats!”.

That link gives her more cats ... and also transfers
$1000 from her account to an account in Bermuda!

Cross-Site Request Forgery

So how did this happen?

<form method=“post” action="https://mybank.com/doTransfer”>
Enter amount to transfer: <input name=“amount”>

Enter ID of account to transfer from: <input name=“from”
value=“Checking”>

Enter account number to transfer to: <input name=“to” >
</form>

Generates a form POST request that looks like:

amount=1500.00&from=Checking&to=319029109

Easy, and predictable. And easy for the attacker to
replicate, as long as Jane is logged into her banking
site.

https://mybank.com/doTransfer
https://mybank.com/doTransfer

ross-Site Request Forgery

* Combine this with an XSS attack.

* Now we can use XMLHttpRequest!

‘Avoiding CSRF

Fairly simple to avoid:

* Place a unique (per-session, at least) token in
any form that will post data back to the

application.

* OWASP CSRF Guard and ESAPI

Y \
ol 35

S
N

The OWASP Top 10

Al. Injection

A2. Broken Authentication & Session Management
A3. Cross-Site Scripting (XSS)

A4. Insecure Direct Object References

A5. Security Misconfiguration

Ab6. Sensitive Data Exposure

A7. Missing Function-Level Access Control

A8. Cross-Site Request Forgery (CSRF)

A9, Usihg Knownh=Vulhérable
Components

A10. Unvalidated Redirects and Forwards

Known-Vulnerable Components

Libraries, frameworks, servers, and operating
systems have vulnerabilities discovered by security

researchers.

Continuing to use those vulnerable components
puts your application and infrastructure at risk.

y X
S '
s

—

N
[

Avoiding Vulnerable Components

* Track your components usage, versions, and
sources.

* Stay on top of updates.

* Be prepared to mitigate vulnerabilities with
infrastructure.

The OWASP Top 10

Al. Injection

A2. Broken Authentication & Session Management
A3. Cross-Site Scripting (XSS)

A4. Insecure Direct Object References

A5. Security Misconfiguration

Ab6. Sensitive Data Exposure

A7. Missing Function-Level Access Control

A8. Cross-Site Request Forgery (CSRF)

A9. Using Known-Vulnerable Components

AL, Unvalldated Redirects ana
Forwarads

v 8
p— 1 S

- (et

Unvalidated Redirect/Forwards

Applications which fail to validate untrusted data
which is then used as all or part of a redirect
destinations can allow their users to be
unknowingly sent to malicious sites.

: v/
AN —
D, .y

e

\ =

Unvalidated Redirects/Forwards

Example:
http://www.yourbank.com/mainMenu

redirects to:

http://www.yourbank.com/doLogin?next=http://www.yourb
ank.com/mainMenu

User logs in, then is redirected to URL specified as
‘next’.
http://www.yourbank.com/mainMenu

Simple, right?

http://www.mywebapp.com/mainMenu
http://www.mywebapp.com/doLogin?next=http://www.mywebapp.com/mainMenu
http://www.mywebapp.com/doLogin?next=http://www.mywebapp.com/mainMenu
http://www.mywebapp.com/mainMenu

i o 4
'\ AN] -
S
. (=5

Unvalidated Redirects/Forwards

Well, what if a phisher sends out an e-mail that
looks like:

To: yourmom@yahoo.com
From: security@yourbank.com

Your account is at risk!

Our contact records are out of date. Please log in to our website at:

https://www.yourbank.com/dolLogin?next=https://www.scam.com/yourbank.com

She’s probably going to click, right?

mailto:yourmom@yahoo.com
mailto:security@yourmomsbank.com
https://www.yourbank.com/doLogin?next=https://www.scam.com/yourbank.com
https://www.yourbank.com/doLogin?next=https://www.scam.com/yourbank.com
https://www.yourbank.com/doLogin?next=https://www.scam.com/yourbank.com
https://www.yourbank.com/doLogin?next=https://www.scam.com/yourbank.com
mailto:yourmom@yahoo.com
mailto:security@yourmomsbank.com
https://www.yourbank.com/doLogin?next=https://www.scam.com/yourbank.com
https://www.yourbank.com/doLogin?next=https://www.scam.com/yourbank.com
https://www.yourbank.com/doLogin?next=https://www.scam.com/yourbank.com
https://www.yourbank.com/doLogin?next=https://www.scam.com/yourbank.com
https://www.yourbank.com/doLogin?next=https://www.scam.com/yourbank.com

';. . ol
" __e o -
7P
[N

Avoiding Unvalidated Redirects/Forwards

Easier than some other issues:
* Avoid using redirects and forwards.
* If you do have to use them:

* Don't base them directly on data coming from
the browser.

* Name your destinations.

* Use relative paths (but be sure to sanitize the
path).

* If you must use full URLs, have a lookup table
of allowed URLs to redirect to.

AppSec and the SDLC

X (&
—
- 3
|

ppSec and the SDLC

How can developers make sure the systems
you're developing are secure?

Make sure systems are developed securely!

Integrate security into your SDLC.

';. . ol
— A o
4 g }
' |

ppSec and the SDLC

“Finding and fixing a software problem
after delivery is often 100 times more
expensive than finding and fixing it during
the requirements and design phase.”

http.://www.cs.umd.edu/~basill/publications/proceedings/P95. pdf

The goal: Move security as early into the
SDLC as possible.

http://www.cs.umd.edu/~basili/publications/proceedings/P95.pdf
http://www.cs.umd.edu/~basili/publications/proceedings/P95.pdf
http://www.cs.umd.edu/~basili/publications/proceedings/P95.pdf

ppSec and the SDLC

Start with figuring out your current state.
* Penetration Testing

* Code Review

Where did the problems originate?
* Coding practices?

* Infrastructure issues?

* Architecture issues?

* Process Issues?

X (&
—
- 3
|

ppSec and the SDLC

* Fix the issues discovered.

* Develop repeatable processes and
procedures to prevent the issues from
happening again.

* (Code standards
(GOOD CODE == SECURE CODE!)

* Deployment standards

* Architecture standards

i
el

ppSec and the SDLC

* Continue working backwards in the SDLC.

First security testing along with QA testing, then...
Automated security testing alongside unit testing.
Library and configuration management.

Static code analysis tools in pre-commit hooks.

Manual spot checks of checked in code for
security issues.

o \ (1)
-
y
|

ppSec and the SDLC

And last, but not least...training. The more
developers in your organization that
understand AppSec, the more secure your
organization will be.

Eventually, Application Security will become
simply another piece of the development
process.

Summary &
Conclusion

J r V!

\;.‘.
—, =
N 3

Summary

The Internet can be a nasty place for a web
application...

...but if security is baked into that
application, it can be a lot less nasty for
everyone involved.

g

Questions?

Additional Reading

OWASP Top Ten 2013 — RC1

* hittp.//owasptopl0.googlecode.com/files/OWASP%20Tob%2010%20-
%202013%20-%20RC1.pdf

OWASP Cheat Sheets

o NOttps.://Wwww.owasp.orq/index.php/Cheat Sheets

And check http.//jferqg.thedotin.net/AppSec/
later next week for some other resources.

http://owasptop10.googlecode.com/files/OWASP Top 10 - 2013 - RC1.pdf
http://owasptop10.googlecode.com/files/OWASP Top 10 - 2013 - RC1.pdf
http://owasptop10.googlecode.com/files/OWASP Top 10 - 2013 - RC1.pdf
http://owasptop10.googlecode.com/files/OWASP Top 10 - 2013 - RC1.pdf
http://owasptop10.googlecode.com/files/OWASP Top 10 - 2013 - RC1.pdf
http://owasptop10.googlecode.com/files/OWASP Top 10 - 2013 - RC1.pdf
https://www.owasp.org/index.php/Cheat_Sheets
https://www.owasp.org/index.php/Cheat_Sheets
http://jferg.thedotin.net/AppSec/

